
.

Note that Information contained in this document is for educational purposes.

Evaluation of static, dynamic,

and hybrid analysis

techniques in the analysis of

various malware.

Selina Fahy

CMP320: Ethical Hacking 3

BSc Ethical Hacking Year 3

2020/21

.

Abstract

Malicious software, otherwise called malware, is becoming a common occurrence in the modern-day

world as computerized devices are being used more and more. Viruses, spyware, adware,

ransomware – these are some of the most common forms of malware that people and companies are

falling victim to.

In this report, the tester goes over different types of malware and uses them to evaluate malware

analysis techniques. The techniques that are discussed are Static analysis, Dynamic analysis, and

Hybrid analysis.

Overall, the tester found that each technique holds their own advantages and limitations, as well as

the environments that some are best used in – for example setting up a virtual machine for

dynamically testing malware in order to minimize damage.

.

Contents

1 Introduction .. 1

1.1 Background ... 1

1.2 Aim .. 2

1.3 Methodology ... 2

1.4 Tools .. 3

2 Procedure .. 4

2.1 Overview of Procedure ... 4

2.2 Procedure .. 4

2.2.1 Static analysis .. 4

2.2.2 Dynamic analysis ... 12

2.2.3 Hybrid analysis .. 27

3 Results ... 39

3.1 Results ... 39

4 Discussion .. 41

4.1 General Discussion .. 41

4.2 Conclusions ... 41

4.3 Future Work .. 41

References .. 42

Appendices .. 45

Appendix A – Virus Total ... 45

Appendix B – Dependency Walker.. 52

Appendix C - Strings .. 55

Appendix D – Regshot ... 63

1 | P a g e

1 INTRODUCTION

1.1 BACKGROUND

Malicious software, also known as malware, is software purposefully made with the intent to

do harm to a computer, network or device in order to gain access to information and do harm.

Viruses, Worms, Trojan Horses, adware and much more are some of the most common forms

of malware. These programs were developed and sent across the internet in order to cause

disruptions, steal information and/or to gain access to multiple devices for other intentions.

With computers and the internet growing in popularity it is becoming a primary target when

malicious users attempt to attain some form of information regarding other users. Such

information can pertain to personal information, credit card details, or even finding way to

steal user accounts to certain websites, etc. To fight these malicious programs, one needs to

analyse them first. One technique of analysis is through Static analysis, which involves

examining the code without executing the program.

Static analysis is considered to be the safer technique of malware analysis due to the lack of

execution of said malware. However, due to the limitations of static analysis other methods

needed to be considered.

Another such technique to analyse malware is through dynamic analysis. Dynamic analysis

involves the actual executions of the malware to examine it’s behaviour. In order to minimize

damage, it is recommended that dynamic analysis occurs within a sandbox/virtual machine,

as this will stop the malware from having an effect on the host PC and the network that it is

connected to.

However, dynamic analysis has limitations which further provides the need to be able to

examine malware a step further. This introduces the hybrid analysis technique which is a

combination of static and dynamic analysis claiming to make up for the limitation in both of

the mention techniques.

2 | P a g e

1.2 AIM

The aim of this report is to conduct several tests in order to evaluate the analysis techniques

of malware analysers through analysing malware. By following a methodology, the tester will

use each of the 3 techniques – static, dynamic and hybrid – to analyse various malware and

evaluate each one in terms of how well they can determine the potential effects of the

chosen malware.

This report aims to capture the process of analysis and explain the techniques while also

demonstrating the techniques through analysing malware.

In order to achieve this the following objectives should be met:

• Setting up a safe environment for malware analysis.

• Prepare tools that will be used – gaining information regarding the tools used for each

technique such as PEview, Dependency Walker, Wireshark, etc.

• Using methodology with each of the 3 different analysis techniques on varying types

of malware.

• Reporting and evaluation – reporting all findings regarding the analysis of malware

using each of the techniques supported by evidence and evaluate each technique

describing their benefits and limitations.

1.3 METHODOLOGY

The tester mainly followed the guidance of the Practical Malware Analysis: A Hands-On Guide to

Dissecting Malicious Software (Sikorski and Honig, 2012), which allowed the tester to follow a highly

regarded malware analysis book to produce a comprehensive evaluation of malware analysis techniques.

The malware used in the report was downloaded from the practical malware analysis website under the

‘labs’ tab (Sikorski and Honig, 2012).

Methodology:

1. Static Analysis – a method in order to inspect malware without running it. This allows for

analysis of the code and checking for signature recognition.

2. Dynamic Analysis – a method to examine malware by running it in a simulated environment (e.g.

virtual machine). This allows for the analysis of the behavior of the malware.

3. Hybrid Analysis – a combination of Static and Dynamic analysis that overcomes many of the

limitations of these two methods. This method allows for the analysis of signatures and

observation of behaviour.

3 | P a g e

1.4 TOOLS

Here the tester will be explaining all the tools that will be used, a basic guide on how to use them, and

what they do.

Some of the tools that the tester used were PEview (Radburn, 2019), PEiD (Download PEiD 0.95, 2018),

Dependency Walker (Dependency Walker (depends.exe) Home Page, n.d.), Process Monitor (Wayback

Machine, n.d.), Process Explorer (Russinovich, 2020), Regshot (regshot, 2008), ApateDNS (ApateDNS

Download | FireEye, 2021), INetSim (Hungenberg and Eckert, 2007), Strings searching (Rissinovich,

2016), and Wireshark (Index of /download, 2012).

The first tool that will be looked at is PEview. PEview is a free and easy to use tool that is used to look at

PE files, such as PE headers and PE sections. This helps in identifying imports, file size, and other file

specific data.

The next tool that will be looked at is Process Monitor. Process Monitor is an advanced monitoring tool

for Windows that provides a way to monitor registry, file system, network, process, and thread activity.

Process Monitor uses RAM in order to log data about the system, in which can lead to the crashing of

the VM, so when the tester felt that there was no need to continue monitoring, Process Monitor was

turned off.

Next, there is Process Explorer, which is an application that monitors running processes and displays

them through a parent-child relationships diagram.

Another tool used was Regshot – a registry snapshot tool. Regshot is an “open-source registry

comparison tool” (regshot, 2008) that allowed the tester to take and compare two registry snapshots

before and after the execution of malicious software. To do this the tester launches Regshot and takes a

snapshot using the “1st Shot” button, runs the malware, then when the malware is presumed to have

‘finished’, the tester then takes a second snapshot using the “2nd Shot” button. Finally, by clicking the

“Compare” button, the two snapshots are compared and returned as either a plain .TXT file or a HTML

file.

ApateDNS is a free to use tool that spoofs DNS requests through listening on port 53. By connecting

ApateDNS to a fake webserver that was set up on the Linux VM, it is possible to capture any requests

sent along this port.

INetSim is a free software suite that can be used to simulate common Internet services. It fakes HTTP,

HTTPS, FTP, IRC, DNS, SMTP, etc. connections (Sikorski and Honig, 2012).

Finally, Wireshark is an open-source sniffer or otherwise known as a packet capturing tool that

intercepts and logs network traffic.

4 | P a g e

2 PROCEDURE

2.1 OVERVIEW OF PROCEDURE

Following the methodology mentioned, the tester went on to evaluate the different techniques in

malware analysis. To achieve this the tester used a selection of malware from the labs located on the

practical malware analysis website alongside a selection of tools to analyse the malware with.

2.2 PROCEDURE

2.2.1 Static analysis

2.2.1.1 Unpacked

The tester started with static analysis when evaluating the analysis techniques with various malware for

this report. The tools that were used for this were Virus Total, Dependency Walker, PEview, and PEiD.

Firstly, the tester sent a malicious .EXE file through virualtotal.com to see if it was a malicious software

with a signature commonly known. The results can be seen in the following figures Figure 1 and Figure 2,

with all results seen in Appendix A.

Figure 1 Virus Total – Lab01-01.exe

5 | P a g e

Figure 2 Virus Total – Lab01-01.dll

The above figures informed the tester that these two files are registered as malicious files on most of

anti-virus scanners.

Next, the tester looked at the malware with it’s corresponding .DLL file through Dependency Walker as

seen in Figure 3 and Figure 4. In these figures it can be seen that there are a few imports including

kernel32.dll and msvcrt.dll, each importing further functions. Screenshots pertaining to the entire

Dependency Walker results can be seen in Appendix B.

6 | P a g e

Figure 3 Static analysis of Lab01-01.exe Malware in Dependency Walker

Figure 4 Static analysis of Lab01-01.dll in Dependency Walker

Kernel32.dll is a very common DLL that contains all key functions that allow for programs to do things

such as have access to and manipulate memory, files, and hardware. Furthermore, the ws2_32.dll file

7 | P a g e

is library that is used to handle network connections. It relates to software processes and allows

applications to communicate.

Then, the tester used the tool PEview in order to look at any chances that the malware is packed or

obfuscated. This is done by looking at and comparing the Raw Data value and the Virtual Size. If the

malware is not packed at most there will be little difference between the size of them, otherwise if

there is a large difference between the two, this indicated that the malware had been packed. In Figure

5 it can be seen that there is very little difference between the Raw data and the Virtual Size, therefore

it can be assumed that this particular malware is not packed in any way.

Figure 5 Static analysis of Lab01-01.exe in PEview - checking Raw Data and Virtual Size

Furthermore, the packed state is further confirmed through the use of another tool: PEiD. This tool

helps in identifying if software is packed and potentially what was used to pack it. As seen in Figure 6

this particular malware is not packed and has been identified as having been compiled with Microsoft

Visual Studio C++.

Figure 6 Static analysis of Lab01-01.exe- packed state through PEiD

8 | P a g e

After determining that the malware was not packed, the tester then moved on to see what sort of

information could be gathered through string searching. To do this the tester used the Microsoft Strings

program. The tester was able to find out some possible functionalities of the malware – as seen in Figure

7 and Figure 8 below, in which all information returned can be seen in Appendix C.

Figure 7 Static analysis of Lab01-01.exe - String search

9 | P a g e

Figure 8 Static analysis of Lab01-01.dll - String search

From Figure 7, it can be noted that some interesting functions that were being called were

‘CreateFileMap’, ‘FindFirstFile’, and ‘FindNextFile’. The CreateFileMap and MapViewOfFile are both

functions that allow for the software to create a ‘Map’ object that will allow for the software to be able

to gain access to the Shared Memory – where, in simple terms, the CreateFileMap is the map object and

MapViewOfFile allows the access to the memory. While the FindFirstFile and FindNextFile are functions

that are used to search for specific names and files. Furthermore, there is the interesting collision of

similar looking names ‘Kernel32.dll’ and ‘Kerne123.dll’, which may indicate that the malware may

attempt to disguise itself as the kernel32.dll file and may contain malicious code.

Therefore, it can be presumed, from the above Figure 7, that the malware searches for .EXE files on the

machine and attempts to disguise it’s core malicious code as the kernel32.dll file using the name

kerne123.dll.

While from Figure 8 it can be seen that there are fewer functions called, but one interesting one is

‘CreateProcessA’, followed by what seems to be an IP address ‘127.26.152.13’. ‘CreateProcessA’ is a

function that allows for a process to be created along with a primary thread, and when used can call any

process that the user wants e.g., malicious software.

It is also noted that both ‘CreateProcessA’ and sleep are used for backdoors, which may explain the IP

address found (CreateProcessA function (processthreadsapi.h) - Win32 apps, 2018).

10 | P a g e

2.2.1.2 Packed

Before analysing the next malicious software, the tester uploaded Lab01-03.exe to virustotal.com in

order to check if the signature was registered and a commonly known malware (Figure 9). As seen in the

figure, a large majority (51 out of 69) were able to identify it as malicious.

Figure 9 Virus Total - Lab01-03.exe

Next, the tester determined that this malicious file that was packed. This was determined to be packed

through the lack of imports that could be found through the use of Dependency Walker as seen in Figure

10. There is only 1 import: Kernel32.dll, which is very unlikely in any software which leads it to being

packed.

Figure 10 Static analysis of Lab01-03.exe - Dependency Walker

11 | P a g e

This is further confirmed through the use of the PEiD tool and PEview tool, in which the malware was

packed using FSG (Figure 14). As can be seen in Figure 11, Figure 12 and Figure 13 the size of the Raw

Data is significantly less than the Virtual Size. This would further indicate that the malware is packed.

Figure 11 Static analysis of Lab01-03.exe- comparing Raw Data and Virtual Size

Figure 12 Static analysis of Lab01-03.exe- comparing Raw Data and Virtual Size

12 | P a g e

Figure 13 Static analysis of Lab01-03.exe- comparing Raw Data and Virtual Size

Figure 14 Static analysis of Lab01-03 packed state in PEiD

Due to the malware being packed and the tester lacking the correct knowledge for unpacking this

specific malware, it was no longer possible for the tester to be able to move on in the investigation of

the malware.

2.2.2 Dynamic analysis

2.2.2.1 Basic

The next technique that the tester looked at in malware analysis is dynamic analysis, where examination

of the malware occurs after the execution of it. Unlike static analysis, dynamic analysis allows for the

tester to be able to learn about the actual functionality of the malware, over speculation.

One could dynamically examine malware through the use of sandboxes/ Virtual Machines. Sandboxes

often have the ability to analyse malware for free and are popular to use. As demonstrated in 2.2.1, the

tester set up a Windows XP and a Kali Linux virtual machine for the dynamic analysis.

13 | P a g e

The tools that were used during the analysis were Process Monitor, Process Explorer, Netcat, Regshot,

ApateDNS, INetSim and Wireshark. To start, Process Monitor was launched then in order to stop RAM

being used up too quickly the logging was stopped and the display cleared. Following this, to save time a

filter is set so that when logging is turned back on, only desired information is displayed. After, the rest

of the tools are launched and set up as well such as Process Explorer, Regshot, a fake network using

ApateDNS and INetSim, Netcat, and finally Wireshark.

Overall, the basic dynamic analysis method looks something like:

• Run process monitor

o stop

o Clear data

o Set filter

o Run

• Start process explorer

• Gathering a first snapshot of the registry using Regshot

o Take a second snapshot after running malware to compare later

• Setting up VM with INetSim and ApateDNS

• Setting network traffic logging with Wireshark

The virtual network looked something like this: 2 hosts – the malware analysis Windows XP VM running

ApateDNS and the Kali Linux VM running INetSim. The Linux VM is listening on many ports (80, 442, 23)

while the Windows is listening for DNS (port 53) requests. The DNS server on Windows has been

configured to localhost (127.0.0.1, otherwise the IP of the Linux machine). While ApateDNS is configured

to redirect you to the Linux VM (IP) as seen in Figure 15.

Figure 15 Set Default DNS to Linux web server

14 | P a g e

For this test, the tester looked at both a .EXE and a .DLL file.

2.2.2.1.1 EXE file
To start, the tester looked at an .EXE file. Running .EXE files are a common occurrence for both users and

Windows operating system (OS), as they can be triggered by simply double-clicking them. But before

running the malware, the tester did some static analysis checks through the use of Dependency Walker,

to see what sort of imports there were for the malware. As seen in Figure 16 there seems to be only one

import: kernel32.dll. This was most likely showing that this specific malware was packed.

Figure 16 Lab03-01.exe - Dependency Walker

The packed state is proved through the use of both PEview and PEiD, where PEview showed a large

difference between Raw Data and Virtual Size Figure 17 and Figure 18. While PEiD shows that it was

packed and packed using PEncrypt 3.1 Final -> junkcode Figure 19.

Figure 17 Comparing Raw Data to Virtual Size in Lab03-01.exe

15 | P a g e

Figure 18 Comparing Raw Data to Virtual Size in Lab03-01.exe

Figure 19 Lab03-01.exe is packed using PEncrypt 3.1 Final

Following this, the tester looked at any possible strings that could be recovered from the file, and what

could be learned from it. This can be seen in Figure 20 and Figure 21. All returned values can be found in

Appendix C.

16 | P a g e

Figure 20 Strings for Lab03-01.exe

Figure 21 Strings for Lab03-01.exe

Through these figures, it is possible to discern that the malware may attempt to connect to the internet

‘CONNECT HTTP/1.0’ to the website ‘www.practicalmalwareanalysis.com’. Furthermore, it may attempt

to create and/or run a file called vmx32to64.exe, and so on.

Now, that the tester had some basic knowledge about the malware, the tester was ready to start

dynamically assessing the malware.

The tester started with the Process Monitor tool. Firstly, the tester stopped the logging and cleared the

display, by simply having selected the File tab and clicked the Capture events option to stop the logging

of the system, then the tester goes to the Edit tab and selects the Clear Display option before starting

the application to remove unnecessary information (Figure 22 and Figure 23). Then in order to start the

application up again the tester clicked File Capture option in the first step again.

17 | P a g e

Figure 22 Stopping Process Monitor from logging

Figure 23 Clearing the display in Process Monitor

Furthermore, it was possible for the tester to be able to set Process Monitor so that it only monitored

the one executable, this was through the filtering option. This is a particularly helpful tool as it reduces

all the unnecessary information that appears on the display. Using this it was also possible for the tester

to be able to zero in on certain system calls as well. To set the filtering option up the tester went to the

Filter tab and selected the Filter option as seen in Figure 24. When the dialog pops up the tester was

able to filter all the sections that the tester wanted and didn’t want to show up on the screen. All

processes that were shown would have a green tick next to the name while those that the tester did not

want showing up had a red X by the process name (Figure 26). Important filters that were considered

were Process Name, Operation, and Detail, in which the tester chose from comparators such as ‘Is’,

‘Contains’, and ‘Less Than’. Furthermore, some helpful filters were found within the toolbar (Figure 25)

which can filter the Registry, File system, Process activity, and Network – in which all of them are

selected by default (Figure 27).

18 | P a g e

Figure 24 Filtering pop up

Figure 25 Entering the Process name to be filtered and shown

Figure 26 Green tick indicated the process will be shown in display

19 | P a g e

Figure 27 Filtering tabs

After applying the filters (Process Name, Operation WriteFile, and Operation RegSetValue) as seen in

Figure 28, the tester then ran the malicious file Lab03-01.exe. After letting it run and watching Process

Explorer for when the file was finished the tester turned back to Process Monitor to see what was

captured during the execution of the file. Some results returned can be seen in Figure 30.

Figure 28 All the filters for Process Monitor for Lab03-01.exe

20 | P a g e

Figure 29 Mutex WinCMX32 created after running malware

Figure 30 Returned results for WriteFile in Process Monitor for Lab03-01.exe

21 | P a g e

After confirming any possible actions that the file made to the system, the tester then turned to look at

and requests logged in INetSim and captured through Wireshark. In Figure 31 it can be seen that there

was a DNS request to ‘www.practicalmalwareanalysis.com’, as was seen and predicted in the string

figures Figure 20 and Figure 21. This is further backed by the Wireshark capture of a DNS request to

‘www.practicalmalwareanalysis.com’ seen in Figure 32.

Figure 31 INetSim report

Figure 32 Wireshark capture of Lab03-01.exe

2.2.2.1.2 DLL file
Next, the tester looked at malicious a .DLL file – Lab03-02.dll. To start the tester attempted to get

information about the file through the use of Dependency Walker (Figure 33 and Figure 35) as well as

check if this particular malware was packed through the tool PEiD (Figure 34). This confirmed that

Lab03-02.dll was not packed.

22 | P a g e

 In Figure 35 a particularly interesting export was noted: ServiceMain.

ServiceMain was an indicator that this .DLL file needed to be installed as a service to run (chappell,

2021). Furthermore, by having looked at the exports table as well as the strings for the file it was

believed that this malicious DLL file needed to be installed as a service using installA (Figure 35 and

Figure 37).

Figure 33 Dependency Walker - imports for Lab03-02.dll

Figure 34 Using PEiD to check if Lab03-02.dll was packed

Figure 35 Dependency Walker analysis for Lab03-02.dll

After learning a little about the malware through the use of Dependency Walker and PEiD, the tester

then turned to see if any strings could be recovered and any potential information that could be

23 | P a g e

revealed. In the following figures – Figure 36 and Figure 37 – it can be presumed that the malware is

going to make a HTTP request to ‘www.practicalmalwareanalysis.com’. Furthermore, in it can be

presumed that the malware has something to do with an ‘Intranet Network Awareness’ (Figure 38).

Figure 36 Strings search - HTTP Request

Figure 37 Strings search - export function and HTTP request Destination

24 | P a g e

Figure 38 String search - Intranet Network Awareness

However, when considering running the malware it is key to remember that Windows does not have an

automatic method of running .DLL files, unlike with .EXE files.

So, for the tester to have been able to execute this file, the tester would have needed to trigger it

manually. In order to do this the tester would need to know a little about the rundll32.exe file that

comes with Windows automatically and running it alongside the chosen .DLL file in the command line.

The below template code was used.

> ‘rundll32.exe DLL name, Export arguments’

The ‘Export arguments’ value must be a function name within the .DLL file. As was demonstrated earlier

through the use of the tool Dependency Walker where the tester got a list of the exported values in the

Export table.

However, first, to track any changes that the malware might make the tester took a snapshot of the

registry through the use of the tool Regshot by having clicked the “1st Shot” button, before running the

malware (Figure 39). Following this the tester then set up all the tools that the tester was going to use

after installing the malware, this included Process Monitor, Process Explorer, INetSim, and Wireshark.

After installing the malware (Figure 40), the tester then looked towards Process Explorer in order to

ensure there are no more processes being started up or terminated that are related to the

malicious .DLL file. Confirming the termination, the tester then took a second snapshot with Regshot to

compare to the first shot to check if the malware installed itself within the registry. This then allows for

the tester to be able to compare the two shots and have the log saved as a .TXT file (Figure 41). The

entire .TXT file with comparisons for the two snapshots can be found in Appendix D.

25 | P a g e

Figure 39 Regshot

Figure 40 Running the malicious Lab03-02.dll

Figure 41 Compare and create a .TXT log

Also, given that the malware is installed as the IPRIP service the tester started it using the command

below:

> ‘net start IPRIP’

Which outputted information that was very similar to what was found in the strings search (Figure 38)

can be seen in Figure 42.

26 | P a g e

Figure 42 Running the service that the malware was installed under

Next, the tester filters for the .DLL file in Process Explorer looking for the process and Process ID for the

malware. Following this the tester then opened the View, Lower pane view, DLLs and further confirmed

the running of the malicious software (Figure 43).

Then the tester checked the rest of the tools that were set up and found that a DNS request was made

that connected to a website Figure 44. And finally, in the figure there was also found that the malware

made a HTTP GET request over port 80 INetSim to the same host as the DNS request.

Figure 43 Process Explorer Lab03-02.dll running under svchost.exe PID 1064

27 | P a g e

Figure 44 INetSim report on DNS and HTTP requests made

2.2.3 Hybrid analysis
With attempts to use the hybrid analysis technique to analyse malware, the tester firstly used a website

called ‘hybrid-analysis.com’. This website allowed a user to upload a malicious file to the website and

submit it for analysis. The tester uploaded each of the files that have been used so far; Lab01-01.exe,

Lab01-03.exe, Lab03-01.exe, and Lab-03-02.dll.

2.2.3.1 Lab01-01.exe

First, the tester looked at the Lab01-01.exe file. As can be seen in Figure 45, there is a simple uploading

pop up where it was possible to drag and drop the malicious file for analysis. After uploading it and

waiting for the analysis to complete the analysis is returned with images detailing the results of scanning

the malware using various scanners (Figure 46).

Figure 45 Uploading Lab01-01.exe to hybrid-analysis.com

28 | P a g e

Figure 46 Report of Lab01-01.exe

2.2.3.2 Lab01-03.exe

Next the tester looked at Lab01-03.exe. After uploading the next malicous software, Lab01-03.exe

(Figure 47), more results were returned. As was seen with the previous malware, there was a visual

representation of the identification as malware from various scanners (Figure 48 and Figure 49). Figure

49 indicates that the malware has been identified by a large majority of the malware scanners, and is

therefore classified as a threat.

Figure 47 Uploading Lab01-03.exe to hybrid-analysis.com

29 | P a g e

Figure 48 Report of Lab01-03.exe against various scanners

Figure 49 More information returned from the hybrid analysis - 'Malicious Indicators'

30 | P a g e

In figures Figure 50 and Figure 51 there can be seen more information regarding the malware that was

uploaded. In Figure 50 it can be seen any parts of the malware that had a link to the functionalility of the

malware has be indicated to be ‘suspicious’. While in Figure 51 there a more ‘informative’ peiece of

information regarding the malware such as the size of the Raw Data being zero – indicating the likliness

of the malware was packed as was seen in the Static analysis that occurred in section 2.2.1 part 2.2.1.2.

Figure 50 More information returned from the hybrid analysis - 'Suspicious Indicators'

Figure 51 More information returned from the hybrid analysis - 'Informative'

31 | P a g e

2.2.3.3 Lab03-01.exe

After the completion of the of the Lab01-03.exe file, the tester then uploaded the Lab03-01.exe file

(Figure 52 and Figure 53).

Figure 52 Uploading Lab03-01.exe

Figure 53 Uploading Lab03-01.exe

Figure 54, like the previous malware analysis, is a representation of how many scanners recognize this

file as malware. Figure 55 shows results from an analysis of ‘Technique Detection’ where it noted

interesting behaviour from the malware and catergorised it as persistent, privilege escalating, has access

to Remote Desktop Protocol.

32 | P a g e

In figures Figure 56, Figure 57, and Figure 58, much like the previous malware, the report breaks down

the sections of the malware into ‘Malicious Indicator’, ‘Suspicious Indicator’, and ‘Informative’.

Figure 56 is the figure representing the ‘Malicious Indicator’, which simply goes to explain that the

malware was detected by a large amount of malware scanners and its relevance.

Figure 57 represents the ‘Suspicious Indicator’ section of the analysis report, which details the

malware’s attempt to connect to the URL ‘www.practicalmalwareanalysis.com’ – much like what was

found in the dynamic analysis of this malware.

Finally, Figure 58 shows the ‘Informative’ section of the hybrid analysis report. This shows a similar

selection as to Figure 57, where the malware attempts to connect to

‘www.practicalmalwareanalysis.com’.

Figure 54 Report of Lab03-01.exe against various scanners

Figure 55 Technique Detection for Lab03-01.exe

33 | P a g e

Figure 56 More information returned from the hybrid analysis for Lab03-01.exe - 'Malicious Indicators'

Figure 57 More information returned from the hybrid analysis for Lab03-01.exe - 'Suspicious Indicators'

34 | P a g e

Figure 58 More information returned from the hybrid analysis for Lab03-01.exe - 'Informative'

2.2.3.4 Lab03-02.dll

Finally, the tester uploaded Lab03-02.dll onto hybrid-analysis.com (Figure 59 and Figure 60). Like the

previous analysis reports Figure 61 shows the number of malware scanners to recognize this malware as

a threat.

Figure 59 Uploading Lab03-02.dll

35 | P a g e

Figure 60 Uploading Lab03-02.dll

Figure 61 Report of Lab03-02.dll against various scanners

Following this, figures Figure 62 and Figure 63 show further information about the malware.

Figure 62 shows the ‘Netowork Analysis’ section which tells about the malware trying to make a

connection to 2 IP addresses.

While Figure 63Figure 62 shows the ‘Technique Detection’ detailing this malware as persistent, evades

defence, and so on.

These figures explains the main features if the malware by detialing that it possibly used to gain access

to a device through persitance and defense evasion as well as gain access to or create any user

36 | P a g e

credentials. Then, connects to external IP addressed, to potentially pass the information back to the

attacker (sender of the malware).

Figure 62 Further information about Lab03-02.dll – ‘Network Analysis’

Figure 63 Further information about Lab03-02.dll – ‘Technique Detection’

Following this, much like the previous few reports , there are sections details various strings and

functionality of the malware (Figure 64, Figure 65, Figure 66, and Figure 67). Figure 64 show the

‘Malicious Indicators’ which reports that the malware is identified as a thread by a large number of

antivirus scanners. While Figure 65 shows more about the potential functionality of the malware, as it

details the creation of a new process after the malware is run. With the creation of a new process, there

are a multitude of processes that a malicious attacker might wish to create that would allow them to be

able to gain information about the machine that it has been executed as well as find a way to gain

access to it. Lastly, in figures Figure 66 and Figure 67 there is information about what the malware has

created, potentially after running it. This includes the creation of a mutant and new processes in Figure

66. This is finally followed by the attempt to make a connection to ‘www.practicalmalwareanalysis.com’

website and potential installation for persistence of the malware in Figure 67.

37 | P a g e

Figure 64 More information returned from the hybrid analysis for Lab03-02.dll - 'Malicious Indicator'

Figure 65 More information returned from the hybrid analysis for Lab03-02.dll - 'Suspicious Indicator'

38 | P a g e

Figure 66 More information returned from the hybrid analysis for Lab03-02.dll - 'Informative'

Figure 67 Install/Persist and Network related information about Lab03-02.dll

After completing the hybrid analysis using ‘hybrid-analysis.com’ the tester intended to use Cuckoo

Sandbox, a very popular sandbox for malware analysis, however due to both technical issues and time

constraints this was not achieved.

In theory, the Cuckoo Sandbox (Cuckoo Sandbox - Automated Malware Analysis, 2021) was expected to

give similar results compared to ‘hybrid-analysis.com’ with perhaps more detailed information as well as

results with a stronger demonstration of the effects of the malware, compared to the static information

provided by the hybrid analysis website.

39 | P a g e

3 RESULTS

3.1 RESULTS

The aim of the analysis of malware was to evaluate the various analysis techniques that are available

and mostly used: Static, Dynamic, and Hybrid analysis. These tests went to show both the advantages

and limitations that each technique has, and which one may be considered to be the better technique to

use.

The tester started the tests using the static analysis technique. To implement this technique the tester

used tools such as VirusTotal.com, PEview, Dependency Walker, and so on. Through these, as seen in

section 2.2.1 – Static analysis – the tester was able to piece together the threat level through signature,

as well as potential functionality of the malware. By gathering data through these methods, it was

possible for the tester to be able to evaluate the benefits and limits of static analysis. Overall, it was

noted that through the use of anti-virus scanners in the browsers have the ability to identify malware

that is already stored in the database through signatures, this particular method is essentially useless if

one was to upload a piece of malware that is not in said database or have a signature related to it, as

these can be changed by a particularly ‘strong’ malicious programmer. Furthermore, when using tools in

order to attempt to break down the malware in strings and viewing imports etc. there is no guarantee

that the malware will use each specific import and/or function used from each import. However, static

analysis is a simple way to be able to gain information about a suspicious file and does not require any

testing through execution and likewise does not require to set up a virtual machine/ sandbox.

Considering the limitations found in the static analysis technique, another technique was taken up –

Dynamic analysis. For this analysis technique some static analysis techniques were still used, given that

it provides some insight as to what the tester might expect from the malicious files that are being tested.

Following the static analysis, the tester used a Kali Linux and a Windows XP virtual machine for the

execution and analysis of the malware. Through the execution of the malware, it was possible to

determine, with evidence, the functionality and therefore covering one of the limitations of static

analysis. Furthermore, dynamic analysis removes the limitation of the type of application that can be

tested. For example, with static analysis (unless using a large number of various tools) tools will be

limited to the language and/ or type of application that can be analysed. With dynamic analysis it is

possible to run a much larger population of file types and capture events that have occurred.

However, this technique provides a form of false security that everything is being address and/ or

recorded by the tools that are being used, even though false positives and false negatives can still occur.

Furthermore, there is the consideration of the costs to have and run virtual machines/ sandboxes, which

involves more knowledge in setting up and using them.

For hybrid analysis, it can be considered to be a faster alternative to both static and dynamic analysis, as

well as significantly less time and labour being used. Using ‘hybrid-analysis.com’, suspicious files can be

uploaded, and the website will do the analysis for the user, while also doing so for free. Therefore, this

technique covers both static and dynamic analysis while also reducing costs and time. However, similarly

40 | P a g e

to dynamic analysis, this may give a false sense of security that everything is being tested while potential

false positive and false negatives may be given. Furthermore, this technique does not eliminate the

costs completely as for more advanced forms of hybrid analysis, providers may charge for the use of

these systems/ sandboxes, etc.

However, a fatal limitation for all the techniques discussed is the analysis through the use of a virtual

machine. Recent malwares have the ability to be able to check whether it is on a ‘real’ (host) machine or

if it has been moved/downloaded onto a virtual machine by being able to check key parts of the

machine. This can include checking the number of cores as well as checking disk size, etc., as these

would be different compared to the host machine.

Moreover, through some research the validity of the hybrid analysis website that was used is not what

was presumed at face value (Are hybrid-analysis reports trustworthy?, 2015). The website that was used

is prone to false positives, something that is expected by the designer, in that there is a lack of a

threshold for threat level that separated genuine programs from malicious ones, as genuine software

can still use similar functions and imports that malicious one’s use, for example creating a process.

Furthermore, this could be seen in Figure 46, where Lab01-01.exe is considered as ‘clean’ by

Crowdstrike’s the Falcon sandbox, which is an unexpected outcome given that Lab01-01.exe is a

malicious file. While also the lack of further information about said malware – leading to a very short

report for it from the hybrid analysis website.

41 | P a g e

4 DISCUSSION

4.1 GENERAL DISCUSSION

Overall, through the various testing that was done, the tester found that each of the techniques

analysed had various advantages and limitations, as was mentioned in the results section. In order of

static, dynamic, and hybrid analysis the limitations of the previous are addressed and countermeasures

implemented in the next technique in order to create an analysis tool that could have the potential to

automate the analysis of malware completely.

Considering everything that the tester has learned about analysis techniques and of the malware, the

tester believes that the technique that returned the most accurate results was the dynamic analysis

technique. This technique provides a hands-on experience that allows for a user to be able to find the

functionality of a piece of malware by running through a virtual machine. Even though there are some

limitations to the use of this techniques, the tester finds that through practice and experience it would

be possible to minimize the majority of them.

4.2 CONCLUSIONS

To conclude, there were many advantages and limitations to all the analysis techniques that were

discussed in this report. As per the aim of this report each technique was used to test various malware

with the intention to evaluate the technique and its efficiency with identifying malware and it’s

functions. Simply following the basics of this report will not provide all the detailed information that

may be desired by large companies or when dealing with particularly complex malicious programs but is

a strong starting point with plenty of improvements and future work to be considered.

As it is, the technique that the tester evaluated to be the better one of the three tested was the dynamic

analysis technique, based on its ability to prove, more effectively through hands-on experience, the

functionality and potential threat-level of malware.

4.3 FUTURE WORK

If more time were available for further analysis, the tester would look at advanced static and dynamic

analysis with the use of further tools such as debuggers and disassemblers. Furthermore, this would

have provided an opportunity to allow the tester to be able to get another form of hybrid analysis tool

working to be able to get more results regarding this particular analysis technique. One such tool would

have been the popular malware analysis sandbox ‘Cuckoo’.

42 | P a g e

REFERENCES
URLs:

FireEye. 2021. ApateDNS Download | FireEye. [online] Available from:

https://www.fireeye.com/services/freeware/apatedns-download-confirmation.html [Accessed

20 April 2021].

Dependencywalker.com. n.d. Dependency Walker (depends.exe) Home Page. [online] Available

from: https://www.dependencywalker.com/ [Accessed 20 April 2021].

softpedia. 2018. Download PEiD 0.95. [online] Available from:

https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-

updated.shtml#download [Accessed 20 April 2021].

Hungenberg, T. and Eckert, M., 2007. INetSim: Internet Services Simulation Suite - Installation

packages. [online] Inetsim.org. Available from: https://www.inetsim.org/packages.html

[Accessed 20 April 2021].

Wireshark.org. 2012. Index of /download. [online] Available from:

https://www.wireshark.org/download/ [Accessed 20 April 2021].

Radburn, W., 2019. WJR Software - PEview (PE/COFF file viewer), [online] Wjradburn.com.

Available from: http://wjradburn.com/software/ [Accessed 20 April 2021].

SourceForge. 2008. regshot. [online] Available from: https://sourceforge.net/projects/regshot/

[Accessed 20 April 2021].

Rissinovich, M., 2016. Strings - Windows Sysinternals. [online] Docs.microsoft.com. Available

from: https://docs.microsoft.com/en-gb/sysinternals/downloads/strings [Accessed 20 April

2021].

Russinovich, M., 2020. Process Explorer - Windows Sysinternals. [online] Docs.microsoft.com.

Available from: https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

[Accessed 20 April 2021].

Sikorski, M. and Honig, A., 2012. Labs. [online] Running the Gauntlet. Available from:

https://practicalmalwareanalysis.com/labs/ [Accessed 18 April 2021].

Web.archive.org. n.d. Wayback Machine. [online] Available from:

https://web.archive.org/web/20140627132742/http://download.sysinternals.com/files/Proces

sMonitor.zip [Accessed 20 April 2021].

Docs.microsoft.com. 2018. CreateProcessA function (processthreadsapi.h) - Win32 apps.

[online] Available from: https://docs.microsoft.com/en-

us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa [Accessed 5

May 2021].

43 | P a g e

Damodaran, A., Troia†, F., Corrado†, V., Austin, T. and Stamp, M., n.d. A Comparison of Static,

Dynamic, and Hybrid Analysis for Malware Detection. [online] Available from:

http://www.cs.sjsu.edu/faculty/stamp/papers/Anusha.pdf [Accessed 9 May 2021].

Doevan, J., 2018. What is ws2_32.dll? Should I remove it? [online] 2SpyWare. Available from:

https://www.2-spyware.com/file-ws2_32-dll.html#:~:text=can%20cause%20problems-

,ws2_32.,ws2_32. [Accessed 3 May 2021].

Docs.microsoft.com. 2018. FindFirstFileA function (fileapi.h) - Win32 apps. [online] Available

from: https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-findfirstfilea

[Accessed 2 May 2021].

Jain, S., 2018. Malware Basic Dynamic analysis. [online] Medium. Available from:

https://medium.com/@jain.sm/malware-dynamic-analysis-

338efc68a654#:~:text=Dynamic%20analysis%20is%20a%20technique,its%20behavior%20durin

g%20run%20time.&text=Other%20way%20is%20to%20run,(no%20NAT%20to%20outside).

[Accessed 4 May 2021].

Kaur, N. and Kumar, A., 2016. A Complete Dynamic Malware Analysis. International Journal of

Computer Applications, [online] 135(4), pp.20-25. Available from:

https://www.researchgate.net/publication/295256150_A_Complete_Dynamic_Malware_Anal

ysis [Accessed 4 May 2021].

0xpat.github.io. 2020. Malware development part 5. [online] Available from:

https://0xpat.github.io/Malware_development_part_5/ [Accessed 4 May 2021].

Mclean, B., 2018. Using Shared Memory in a Dynamic-Link Library - Win32 apps. [online]

Docs.microsoft.com. Available from: https://docs.microsoft.com/en-

us/windows/win32/dlls/using-shared-memory-in-a-dynamic-link-library [Accessed 2 May 2021].

informIT. 2010. Windows System Programming: Process Management. [online] Available from:

https://www.informit.com/articles/article.aspx?p=1564827&seqNum=2 [Accessed 3 May

2021].

Comodo Enterprise. 2021. Malware Analysis Methodology | Malware Analysis Tools from

Comodo. [online] Available from: https://enterprise.comodo.com/forensic-analysis/malware-

analysis-

methodology.php#:~:text=Malware%20Analysis%20Methodology%3A%20Dynamic%20or%20B

ehavioral%20Analysis&text=Examination%20of%20a%20contaminated%20file,general%20beh

avior%20of%20the%20file [Accessed 5 May 2021].

chappell, G., 2021. ServiceMain. [online] Geoffchappell.com. Available from:

https://www.geoffchappell.com/studies/windows/win32/services/svchost/dll/servicemain.ht

m [Accessed 12 May 2021].

Cuckoosandbox.org. 2021. Cuckoo Sandbox - Automated Malware Analysis. [online] Available

from: https://cuckoosandbox.org/ [Accessed 15 May 2021].

44 | P a g e

MalwareTips Community. 2015. Are hybrid-analysis reports trustworthy?. [online] Available at:

<https://malwaretips.com/threads/are-hybrid-analysis-reports-trustworthy.45002/> [Accessed

16 May 2021].

JACKSON, W., 2009. Static vs. dynamic code analysis: advantages and disadvantages -- GCN.

[online] GCN. Available from: https://gcn.com/articles/2009/02/09/static-vs-dynamic-code-

analysis.aspx [Accessed 16 May 2021].

 Books:

Sikorski, M. and Honig, A., 2012. Practical Malware Analysis: A Hands-On Guide to Dissecting

Malicious Software. No Starch Press.

45 | P a g e

APPENDICES

APPENDIX A – VIRUS TOTAL

1) Lab01-01

a. Lab01-01.EXE

46 | P a g e

47 | P a g e

b. Lab01-01.DLL

48 | P a g e

49 | P a g e

2) Lab01-03.exe

50 | P a g e

51 | P a g e

52 | P a g e

APPENDIX B – DEPENDENCY WALKER

Basic Static Analysis:

1) Lab01-01.exe

53 | P a g e

54 | P a g e

55 | P a g e

APPENDIX C - STRINGS

1) Static Analysis

a. Lab01-01.exe

56 | P a g e

57 | P a g e

58 | P a g e

b. Lab01-01.dll

59 | P a g e

2) Dynamic analysis

a. Lab03-01.exe

60 | P a g e

61 | P a g e

b. Lab03-02.dll

62 | P a g e

63 | P a g e

APPENDIX D – REGSHOT

64 | P a g e

65 | P a g e

66 | P a g e

67 | P a g e

